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MATHEMATICAL MODELING OF PROCESSES OF PULSED 

MELTING AND VAPORIZATION OF A METAL WITH 

CLEARLY SEPARATED PHASE BOUNDARIES 

P. V. Breslavskii and V. I. Mazhukin UDC 519.63-536.422.1 

The authors propose a method of numerical solution of problems of the Stefan type 
with two moving boundaries. As an example they solve the problem of pulsed 
melting and vaporization of an aluminum rod of finite length. 

The pulsed action of concentrated energy fluxes on an absorbing solid medium has been 
considered in a number of monographs [i, 2]. On the whole, however, this problem is far 
from being resolved, due to a number of specific special features. The main feature is that 
an increase of the energy density supplied above a specific value leads to the development 
of complex phenomena in the solid, associated with nonequilibrium states and phase transfor- 
mations. The description of these processes theoretically encounters a number of difficul- 
ties of a physical and mathematical nature. 

The physical difficulties arise from the absence at present of a complete theory of 
nonequilibrium phase transformations and the inadequacy of experimental data. 

The mathematical difficulties are associated with the fact that in a pulsed action, 
e.g., on a metal, one must consider, as a rule, the thermophysical characteristics of the 
substance and the two phase transformations. Analytical solutions of this kind of nonlinear 
problem are known, but are more frequently the exception, and the main methods of solving 
them are finite-difference methods [3]. Usually phase transitions of type I are described 
in the approximation of the classical Stefan problem [4], for which the main difficulties of 
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Fig. i. Temperature dependences: i) p(T); 2) Cp(T); 3) %(T). 
T, K; p, kg/ma; Cp(T), kJ/(kg'deg); %, W/(m'deg). 

Fig. 2. Spatial temperature profiles at different times: i) 
t = -30.76"10 -9 sac; 2) -16.83"10-9; 3) 6.96"i0 -9 sec. x, m. 

solution are due to the moving boundaries of the phases. Two approaches have been used 
mostly in solving the Stefan problem: determining the classical solution with explicit 
separation of the phase boundaries [5, 6], and a generalized solution with the aid of a 
smoothing procedure in a straight-through computation [7, 8]. The use of straight-through 
algorithms is most efficient in solving multidimensional problems [9, i0]. Separation of 
the position of the fronts gives the most complete and detailed information on the ambient 
processes, and allows correct computation in the problem of the role of hydrodynamics 
effects, the volume energy source, and the lack of equilibrium of phase transitions in expli- 
cit form. However, numerical algorithms based on the principle of explicit separation of the 
phase front meet the nonsimple problem of adjusting the computing mesh, and as a rule are 
cumbersome and consume much machine time. Also, in most cases these algorithms are intended 
for solving problems with one phase front [ii, 12]. It is therefore very important to 
develop economical and more sophisticated algorithms for solving problems concerning phase 
transitions of substances with explicitly separated phase boundaries, when the number of 
boundaries exceeds one. One approach to solving this problem may be the method of adaptive 
meshes, linked dynamically to the solution, as proposed by the authors of [13, 14]. 

In the present work the method of [13, 14] is generalized to the case of a problem with 
two moving phase fronts. As an example we solve the problem describing the processes of 
melting and vaporization of a metal rod of finite length exposed to the pulsed action of a 
heat source. 

Statement of the Problem and Method of Solution. We formulate the unsteady spatially 
one-dimensional problem of melting and vaporization of a metal under the action of an energy 
flux with a gaussian distribution of intensity with time. 

Description of the problem of phase transitions of the melting or solidifying type 
reduces to a nonlinear equation of heat conduction in a region with a previously unknown 
moving boundary Fss separating the solid and liquid phases: 

9i(T) Cpi(T) OTz _ 0 ~i(T) OT------L, i = s ,  I. (1 )  
Ot Ox Ox 

At the phase interphase we have the Stefan differential condition 

~ OT~ ~l OTl 

Besides Eq. (2) at the phase boundary we also assign a condition associated with the kine- 
tics of the phase transition. In the classical variant of the Stefan problem used to 
describe the processes of melting or solidification it is ordinarily assumed that the tem- 
perature is continuous at the phase interface 

Ts = Tz = T~ (3 )  
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Fig. 3. Timewise dependences: 
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i) G(t); 2) T(t) (the solid 
line is the Hertz--Knudsen formula, and the broken line is the 
Knudsen layer approximation); 3) Vss 4) Vs G, kW/m2; 
T, K; Vss Vs m/sec; t, sec. 

Fig. 4. Timewise dependences: i) PH(t2"10-8); 2) Ps 
3) ~s -7) (to determine the thickness of the liquid phase 
we used the formula hs = 1.61"10 -8 ~s 4) hv(t1"10-7), t 2, 
tl, sec; PH, Ps bar; H v, m. 

and is equal to the equilibrium transition temperature T m which in many cases can be regar- 

ded as constant. 

The vaporization process is a transition of the material from the condensed state to 
the gaseous, and compared with melting has a large specific heat and a large specific volume. 
Vaporization of metals by concentrated energy fluxes in the subcritical temperature region, 
where there is a clearly pronounced liquid-vapor boundary, can occur in two substantially 
different regimes. In one of these the gasdynamic perturbations in the flow of vaporized 
material have no influence on the vaporization process [2], and in the second the gasdynamic 
factor can have a governing role [15, 16]. 

To describe the process of vaporization on the phase interface surface Fs we use 
the laws of conservation of mass, momentum and energy: 

~vL~ = p (u - -  v~), P~ + O~v~ = p + ~ (u - -  v,o)% ( 4 )  

~l OTl : L v p l v t  __G,  
Ox 

and also we formulate certain additional relations governing the kinetics of the phase tran- 
sition. The simplest example of such a relation is the formula of the Hertz--Knudsen type: 

PH (Tz) (5) J ~ OLVzv = 
(2~RTt )  I/2 

Equation (5) refers to the limiting case when one can neglect collisions in the gas phase 
near the interface. When this is not true one must take account of the flux of particles 
returning to the surface from the gas phase [2]. The value of the reverse flow is deter- 
mined by the conditions of gasdynamic flight beyond the limits of the Knudsen layer, and a 
number of approximations are used to evaluate this numerically [2, 17, 18]. 

In pulsed action, depending on the ratio of the source parameters, we find vaporization 
regimes with subsonic speed. In the framework of our problem it was assumed that in the 
time interval considered the rate of vaporization was equal to the speed of sound. 
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Numerical solution of the problem of Eqs. (1)-(9) was accomplished with the aid of a 
finite-difference method in an adaptive mesh dynamically linked to the solution [14, 15]. 

The method of [14, 15] is based on the idea of an automatic coordinate transformation 
with the help of the desired solution, which allows us to free ourselves from the moving 
boundaries and adjust the computing mesh at each time step. The determination of the mesh 
functions and the coordinate nodes are then continuously linked. The close interconnection 
is reduced to the level of a differential model, in general a nonlinear system of differen- 
tial equations in partial derivatives. In this system some of the equations describe the 
phenomena under direct examination, and some describe the dynamics of the computing mesh, 
determined by the behavior of the desired solution. 

We use a coordinte transformation of general type relevant to the case of the one- 
dimensional problem of Eqs. (1)-(5), with the aid of the substitution of variables: x = 
(q, t) is the forward transformation; and q-=-cp(x, t) is the inverse transformation. Using 
these we can write 

x = ~ (cp (x, t), t). (6)  

We differentiate Eq. (6) with respect to t, bearing in mind that x does not depend on t: 

O =  O~ O~ _~ OK or O =  Ox Oq + Ox 
Oq Ot Ot Oq Ot Ot 

Then O._.__~q = O x / Ox 
Ot Ot / Oq 

Using Eq. 

We introduce the notation: 

Ox Q~ Ox ~ i = s, l. 
Ot 9~ Oq 9i 

(7)  we have  3 q / 3 t  = Q i / $ i ,  and in  a d d i t i o n  we have 

H(x, t)=14(~(q,  t), t) = I/ (q, O, W(x, t )=W(~(q ,  t), t ) = W ( q ,  t), 

014 O{l Oq OH OH Q O[t , H = 9 (T) Cp (T) T, 
o---Y-= o~- o~- -~ at - o~- + ~ -  Oq 

a w  of t  aq p 0~7 w = - -  ~ (T) OT 
Ox Oq Ox ~ Oq Ox 

The heat conduction equation (i) in variables q and t has the form 

OB~ + Qi OYt~ = - -  P~ --,OWi i = s, I. 
Ot ~i Oq r Oq 

The second equation, which is the continuity equation, we obtain from Eq. (7) by differen- 
tiating it with respect to t: 

0 Ox 1 O~i 0r OQi 
--, whence --~-- 

Ot Oq 9~ Ot Ot Oq 

P u t t i n g  t h e  h e a t  c o n d u c t i o n  e q u a t i o n  in  d i v e r g e n t  form and o m i t t i n g  t h e  t i l d a  s i g n ,  we 
w r i t e  t h e  p rob lem of  Eqs.  ( 1 ) - ( 5 )  in  t h e  comput ing  s p a c e  in  t h e  f i n a l  form: 

(7) 

o (~14)~ _ o1~'~ o (Q14),., i = s, l, ( 8 )  
Ot Oq Oq 

OW~ OQi 

Ot Oq ' 

Ox r 

Oq 9~ 

(9) 

(10) 

In these variables Eq. (8) is the energy balance equation, Eq. (9) is the continuity equa- 
tion describing the law of conservation of mass, and Eq. (i0) is the equation connecting the 
variables x and q. 

Choice of the Function Q. The function Q ensures a specific form of coordinate trans- 
formation. In general its structure is arbitrary and must be determined by the special 
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features of the solution which naturally predetermine the use of adaptive meshes in the 
computations. A special feature of solving the Stefan problem, as has been mentioned, is 
the presence of a continuously varying region. The construction of the adaptive mesh for 
such a region consists in the simplest case of an equation for the distribution of nodes, 
close to equilibrium at each time instant. One can achieve this kind of distribution by 

assigning a function Q in the form of the diffusion flux Q-------D 0-~ where D is the diffu- 

sion coefficient (in the simplest cases we can take it as constant~ In our work D was 
expressed in terms of the thermophysical characteristics of the medium: D = 92~/Cp~. 

Boundary Conditions. The boundary conditions for Eqs. (8) and (9) are formulated as 
follows. On the solid-liquid interface (q = qss = Fss for the heat conduction equation we 
use Eq. (3) 

T~ (F~z, t) = Tz (F~z, t) = T~. 

The condition for Eq. (9) is written in the form of a flux of material through the phase 
boundary Qss whose value is determined from condition (2): Qss = -(Ws - Ws 

At the left boundary on the solid side q = q0 and there can be any boundary conditions 
for the heat conduction equation. Because there is no flux of material through the boundary 
for the continuity equation the boundary condition has the form Q(q0, t) = 0. At the moving 
liquid--vapor boundary (q = qs = Fs the flux of material is not zero and the boundary con- 
ditions for Eqs. (8) and (9) are determined from Eqs. (4) and (5) 

%9z OTz __L~Qz _.O" 
~z Oq 

The flux Qs163 t) was determined by two methods: without allowing for the reverse flow, 
for which we used Eq, (5) 

p~ (T3 
Qz~(Fzv, t) = 9zvlo = (2~RT~)I/2 , 

and allowing for the flux of returning particles 

Ql~ (rl~, t) = ~ (u - -  v,o). 

The v e l o c i t y  u was  a s s u m e d  e q u a l  t o  t h e  s o u n d  s p e e d :  u = (vRT)  1 / 2 .  The  unknowns  p and  T 
were determined from the relations of [17]. 

Thus, the problem of moving phase boundaries in the computing space reduces to deter- 
mining the fluxes Qss Qs To approximate the nonlinear system (8) and (9) we used a dif- 
ference scheme written with the aid of the integrointerpolation method: 

J+l 
(*H),'+I/2 -- (*H)/+I/2 .... vr ~f+, _(QH)/+' (QH)/+, i+J - -  

hi+I~2 hi+l/2 
.j,J+l l~i+l/2 - -  ~/J+l/2 /"td+l ~+i - Q[+I (11) 

hi+l~2 

Xi+l - -  q~i+l/2 
~J+l  .t, - i+i  12 wi+112 

To solve the system of nonlinear difference equations we used the method of matrix for- 
ward marching with iterations for nonlinearity [19]. The difference scheme (Ii) was solved 
in each phase subregion; in the solid phase we chose a nonuniform mesh with number of cells 
N s = 30, and in the liquid phase we chose a uniform mesh with Ns = 19. 

Results of Modeling. We consider the problem of melting and vaporization of a con- 
densed medium with thermophysical properties typical for aluminum [20] (Fig. i). The energy 
source was chosen to have parameters typical of concentrated energy sources: G = G o exp 
(--t~/Tf), z = 3"10 -8 sec, G o = 4"108 kW/m 2. One topic of the investigation was to determine 
the role of the kinetic vaporization condition used, Eq. (5) [17], in solving the problem 
as a whole. The results of the modeling are presented in Figs. 2-4. 

The calculations show that melting arises at time t = -3.076.10 -8 sec (Fig. 2). The 
phase separation boundary in the spatial and timewise temperature profiles T(x), T(t) is 
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defined by the knee of the curves (Figs. 2, 3). The characteristic speeds of motion of the 
melt front reach tens of meters per second (Fig. 3). The positive branch of the curve Vss 
corresponds to the crystallization process, and the negative branch corresponds to melting. 
The maximum depth of the liquid phase is reached at time t = 1.28"10 -7 sec and is equal to 
Ls = 2.6 ~m (Fig. 4). Vaporization occurs at any temperature, but at low temperatures the 
rate of vaporization is exceedingly small, and a noticeable motion of the phase boundary 
begins when Vs reaches several centimeters per second. The maximum speed of motion of the 
vaporization front Vs is almost an order of magnitude less than the speed Vss (Fig. 3), and 
correspondingly the thickness of the vaporized layer is much less than that of the melt 
(Fig. 4), and reaches 0.i ~m. 

The numerical experiment has shown that one obtains very similar results by using one 
of the expressions of Eq. (5) or one of those given in [17, 18] as the kinetic vaporization 
condition. A comparison of the results using the Hertz--Knudsen formula, Eq. (5) (broken 
line) and using the condition from [17] (solid lines) is made in Fig. 3. If one computes 
the reflected flux of material using the relations of [17] one obtains comparatively notice- 
able differences in the values of the speed of motion of the vaporization front V~v and 
values of the surface temperature, since a smaller value of the rate of removal of material 
leads to larger values of surface temperature (Fig. 3). However, the differences observed 
in determining the outflow pressure P~, which, as is known, is one of the most sensitive and 
informative characteristics of the vaporization process, are not appreciable. When Eq. (5) 
is used we find Pt = 0.5 PH- In the model with the Knudsen layer [17] PK = 0.55 PH (Fig. 4). 
Thus, in the vaporization regimes with M = 1 one can use any of the models from Eq. (5) or 
[17, 18]. 

The dynamics of the computing mesh in each subregion can be described with the aid of 
the quantity ~ measuring how often the initial dimensions of the computing cells were 
changed. In the solid phase region ~s can vary from i, which corresponds to no change, to 0, 
which corresponds to complete transition of the region to the liquid phase. In the calcula- 
tions the maximum variation of ~s was 0.8. In the liquid phase region ~ varied from an 
arbitrarily small quantity to a value determined by the volume of the melted material. For 
the parameters chosen in the calculations ~ is practically independent of the variable x, 
and Fig. 4 presents the dependence ~(t) which shows how often the liquid phase region was 
changed, and also the spatial mesh step size h i. 

We note that the computing algorithm for one-dimensional problems does not impose any 
restrictions on the number of phase boundaries, and in principle this can be any number. 

NOTATION 

x, coordinate; t, time; q, computing variable; p, Cp, A, density, specific heat and 
thermal conductivity; Lm, Lv, heat of melting and vaporization; Tm, Tb, temperature of 
melting and vaporization; R, gas constant; E, W, specific energy and heat flux; PH, P~, 
saturation and outflow pressures; p, v, T, pressure, velocity and temperature; u, speed of 
the gas flow; Uc, speed of sound; y, M, ratio of specific heats and Mach number; G, source 
intensity; ~, Q, coordinate transformation function; F, phase interface; J, flux of material 
across the boundary. Subscripts: s, 6, solid and liquid phases; s~, ~v, interphase boun- 
daries; use of p, T, u, p with no subscripts means that the corresponding parameter refers 
to the gas phase. 
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IDENTIFICATION OF HEAT TRANSFER BETWEEN THE 

CASTING AND THE MOLD IN INGOTLESS ROLLING 

S. L. Balakovskii, E. F. Baranovskii, 
N. V. Diligenskii, and P. V. Sevast'yanov 

UDC 536.24 

A method is proposed for determining the heat flux inside a roll-mold on the basis 
of solution of the inverse heat-conduction problem by the gradient method. 

The study of casting processes in a roll-type mold in order to select efficient produc- 
tion schemes entails the development of a set of mathematical models capable of predicting 
the thermal and thermal-stress states of equipment and products [i]. As is known [2, 3], 
the most important factor which affects solidification is heat transfer between the casting 
and the mold. At the same time, direct measurement of temperatures and heat fluxes on the 
mold surface is not possible because the transducers fail from thermal and mechanical loads 
[4]. It was proposed in [5] that the contact temperature be determined by means of a so- 
called natural thermocouple. Here, the contacting bodies themselves act as the thermoelec- 
trodes. However, such a method is not sufficiently reliable and, moreover, does not permit 
consideration of the temperature distribution along the contact. Given these circumstances, 
it is best to obtain temperature measurements at internal points and to use inverse-problem 
methods to establish the thermal parameters on the contact surface [6]. 

A sketch of the equipment used for casting in a roll-type mold is shown in Fig. i. 
Since the radius of the roll is considerably smaller than its length, we will assume that 
there is no heat transfer in the axial direction. Then the thermal problem for quasisteady 
operation of the roll is described as follows in cylindrical coordinates (p, ~) : 

v a~ p 09 - --_9 + 92 a~ ' 

0 < ~ < 2 = ,  ~ < 9 < 1 ,  

OT o=oo-- ~R 0p - - - f -  (TI0=0o - -  ~oo) ,  ( 2 )  

V. V. Kuibyshev Polytechnic Institute, Kuibyshev. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 57, No. i, pp. 114-119, July, 1989. Original article submitted 
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